所有quiz和assignment链接:
Coursera | Applied Machine Learning in Python(University of Michigan)| Quiz
Coursera | Applied Machine Learning in Python(University of Michigan)| Assignment1
Coursera | Applied Machine Learning in Python(University of Michigan)| Assignment2
Coursera | Applied Machine Learning in Python(University of Michigan)| Assignment3
Coursera | Applied Machine Learning in Python(University of Michigan)| Assignment4
叨下,读取文件因为官网问题,要把pd.read_csv('readonly/fraud_data.csv')
改成 pd.read_csv('fraud_data.csv')
,Assignment2也是,不然你就会收获很多次0分 :)
然后因为版本问题,可能在自己jupyter notebook上跑会出现各种问题,比如答案不一致,第6题不能读入’l1’参数等,如果遇到非技术问题,直接在线上平台运行调试多半成功。
欢迎讨论呀~
You are currently looking at version 1.2 of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the Jupyter Notebook FAQ course resource.
Assignment 3 - Evaluation
In this assignment you will train several models and evaluate how effectively they predict instances of fraud using data based on this dataset from Kaggle.
Each row in fraud_data.csv
corresponds to a credit card transaction. Features include confidential variables V1
through V28
as well as Amount
which is the amount of the transaction.
The target is stored in the class
column, where a value of 1 corresponds to an instance of fraud and 0 corresponds to an instance of not fraud.
1 | import numpy as np |
Question 1
Import the data from fraud_data.csv
. What percentage of the observations in the dataset are instances of fraud?
This function should return a float between 0 and 1.
1 | def answer_one(): |
0.016410823768035772
1 | # Use X_train, X_test, y_train, y_test for all of the following questions |
Question 2
Using X_train
, X_test
, y_train
, and y_test
(as defined above), train a dummy classifier that classifies everything as the majority class of the training data. What is the accuracy of this classifier? What is the recall?
This function should a return a tuple with two floats, i.e. (accuracy score, recall score)
.
1 | def answer_two(): |
(0.98525073746312686, 0.0)
Question 3
Using X_train, X_test, y_train, y_test (as defined above), train a SVC classifer using the default parameters. What is the accuracy, recall, and precision of this classifier?
This function should a return a tuple with three floats, i.e. (accuracy score, recall score, precision score)
.
1 | def answer_three(): |
(0.99078171091445433, 0.375, 1.0)
Question 4
Using the SVC classifier with parameters {'C': 1e9, 'gamma': 1e-07}
, what is the confusion matrix when using a threshold of -220 on the decision function. Use X_test and y_test.
This function should return a confusion matrix, a 2x2 numpy array with 4 integers.
1 | def answer_four(): |
array([[5320, 24],
[ 14, 66]])
Question 5
Train a logisitic regression classifier with default parameters using X_train and y_train.
For the logisitic regression classifier, create a precision recall curve and a roc curve using y_test and the probability estimates for X_test (probability it is fraud).
Looking at the precision recall curve, what is the recall when the precision is 0.75
?
Looking at the roc curve, what is the true positive rate when the false positive rate is 0.16
?
This function should return a tuple with two floats, i.e. (recall, true positive rate)
.
1 | def plot_five(): |
<IPython.core.display.Javascript object>
<IPython.core.display.Javascript object>
1 | def answer_five(): |
(0.83, 0.94)
Question 6
Perform a grid search over the parameters listed below for a Logisitic Regression classifier, using recall for scoring and the default 3-fold cross validation.
'penalty': ['l1', 'l2']
'C':[0.01, 0.1, 1, 10, 100]
From .cv_results_
, create an array of the mean test scores of each parameter combination. i.e.
l1 | l2 | |
---|---|---|
0.01 | ? | ? |
0.1 | ? | ? |
1 | ? | ? |
10 | ? | ? |
100 | ? | ? |
This function should return a 5 by 2 numpy array with 10 floats.
Note: do not return a DataFrame, just the values denoted by ‘?’ above in a numpy array. You might need to reshape your raw result to meet the format we are looking for.
1 | def answer_six(): |
array([[ 0.66666667, 0.76086957],
[ 0.80072464, 0.80434783],
[ 0.8115942 , 0.8115942 ],
[ 0.80797101, 0.8115942 ],
[ 0.80797101, 0.80797101]])
1 | # Use the following function to help visualize results from the grid search |